SHORT COMMUNICATION

TESTOSTERONE METABOLISM BY PLACENTAL MICROSOMES FROM BABOONS. IDENTIFICATION OF 19-NORTESTOSTERONE AND 19-NOR-4-ANDROSTENEDIONE*

LEON MILEWICH[†] and LEONARD R. AXELROD[‡]

Department of Biochemistry, Division of Biological Growth and Development, Southwest Foundation for Research and Education, San Antonio, TX 78284, U.S.A.

(Received 13 March 1978)

Placental microsomes from baboon (Papio cynocephalus) metabolize testosterone to 4-androstenediones, 19-hydroxytestosterone, 19-hydroxy-4-androstenedione, 19-aldotestosterone, 19-aldo-4-androstenedione, 28-hydroxytestosterone, 4-androstene- 3β , 17β -diol, oestrone, oestradiol- 17β , 2-hydroxyoestrone and 2-hydroxyoestradiol [1-3]. Most of these metabolites are either aromatic steroids or substrates for aromatization by human placental microsomes [4]. In the incubations of radioactive-labeled testosterone with baboon placental microsomes we were able to isolate two additional bands of radioactivity which were slightly more polar than testosterone and 4-androstenedione, respectively. Their mobilities suggested that these steroids were the corresponding 19-nor derivatives, 19-nortestosterone and 19-nor-4-androstenedione, which have been described as substrates for the aromatase system of human placenta microsomes [4-9].

Washed, lyophilized placental microsomes from baboon used in these experiments were prepared as described previously [1]. [4-¹⁴C]-testosterone (50.5 mCi/mmol) and [1,2-³H]-testosterone (42.4 Ci/mmol) were purified by paper chromatography before use [1].

The incubations were carried out for 1 h at 37° C using 15 mg of washed lyophilized microsomes per incubation and 2.64 μ Ci of [4-¹⁴C]-testosterone, 58.1 μ Ci of [1,2-³H]-testosterone, and 2.5 mg of NADPH in 4 ml of 0.05 M sodium phosphate buffer, pH 7.14, under oxygen-carbon

Supported, in part, by U.S. Public Health Service Grants AM 3270 and HD08672.

* Presented, in part, at the Federation of American Societies for Experimental Biology 62nd Annual Meeting, San Francisco, California, June 13–18, 1971 (Abstract No. 311).

† Present address: University of Texas Southwestern Medical School, Department of Obstetrics and Gynecology, Dallas, TX 75235, U.S.A.

‡ Deceased.

§ Abbreviations, trivial names and systematic equivalents used in this paper are: Test, testosterone; 4-and, 4-androstenedione, 4-androstene-3,17-dione; 19-OH-Test, 19-hydroxytestosterone, 17β , 19-dihydroxy-4-androsten-3one; 19-OH-4-And, 19-hydroxy-4-androstenedione, 19hydroxy-4-androstene-3,17-dione; 19-aldo-Test, 19-17β-hydroxy-3-oxo-4-androsten-19-al; aldotestosterone, 19-aldo-4-And, 19-aldo-4-androstenedione, 3,17-dioxo-4androsten-19-al.; 2B-OH-Test, 2B-hydroxytestosterone, 2β , 17β -dihydroxy-4-androsten-3-one; E₁, oestrone; E₂, oestradiol-17ß; 2-OH-E1, 2-hydroxy-oestrone, 2,3-dihydroxy-1,3,5(10)-oestratrien-17-one; 2-OH-E₂, 2-hydroxyoestradiol, 1,3,5(10)-oestratriene-2,3,17B-triol; 19-nor-Test, 19-nortestosterone, 17β -hydroxy-4-oestren-3-one; 19-nor-4-And, 19-nor-4-androstenedione, 4-oestrene-3,17-dione.

dioxide (95:5, V/V). Incubations without tissue were used as controls. The reactions were stopped by cooling and by the addition of 15 ml acetone. Using paper chromatography [1-3] the various metabolites and substrate were separated (Fig. 1). 19-Nortestosterone was slightly more polar than testosterone on paper chromatography using the solvent system propylene glycol-saturated methylcyclohexane and paper impregnated with propylene glycolmethanol (1:1, V/V) [MeC/PG (1:1)]; the chromatogram was run for 4 days (Fig. 1). The mobility of 19-nortestosterone relative to testosterone was 0.71-0.74. The area of radioactivity corresponding to 19-nortestosterone was eluted and rechromatographed on paper for 8 days using testosterone as the reference steroid; the radioactive material corresponding to 19-nortestosterone had the same relative mobility as in the first chromatogram. 19-Nor-4androstenedione and 4-androstenedione were collected together in the 4-day runoff (Fig. 1). Paper chromatography using MeC/PG (1:1) but running for 24 h, was found to result in a distinct separation of 4-androstenedione from the more polar 19-nor-4-androstenedione, which had a relative mobility of 0.73-0.79. The purified 19-norsteroid metabolites were crystalized to constant specific activity after dilution with the corresponding authentic steroids 19-nortestosterone and 19-nor-4-androstenedione. The solvent system used for crystallization was acetone-pentane. Specific activities of crystal aliquots obtained in three consecutive crystallizations and rates of formation of 19-nortestosterone and 19-nor-4-androstenedione are presented in Table 1. The constancy of the specific activities and the chromatographic data demonstrate the presence of 19-nortestosterone and 19-nor-4-androstenedione as metabolites of testosterone by baboon placental microsomes. The substrate used in the incubations, [4-14C-1,2,3 H]-testosterone, and the substrate recovered in 2 experiments were crystallized 5 times to constant specific activity: the mean values and S.E. of the ³H:¹⁴C ratios of crystals obtained in the last three crystallizations were 21.7 ± 0.51 (n = 3) for the substrate and 19.81 ± 0.04 (n = 6) for the recovered substrate. The products, 19-nortestosterone and 19-nor-4-androstenedione, processed in the same fashion had ${}^{3}\text{H}:{}^{14}\text{C}$ ratios of 15.4 \pm 0.19 (n = 12) (Table 1). The loss of tritium observed in the isolated 19-norsteroids is unaccounted for. We observed previously that other C_{19} -steroids obtained as products of $[1,2-^{3}H-4-^{14}C]$ -testosterone metabolism by baboon placenta microsomes also showed some tritium loss [1]; this is probably due to spontaneous loss from the C-2 position.

19-Nortestosterone and 19-nor-4-androstenedione are presumably derived from the 19-hydroxy- and/or 19-aldo steroids which have been identified as metabolites of isotope-labeled testosterone by placental microsomes [1-3]. These C-19 oxygenated metabolites, which are also

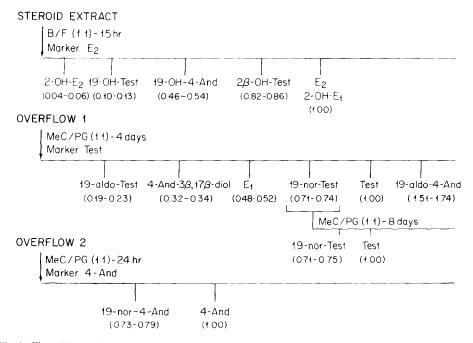


Fig. 1. Flow diagram depicting the separation of steroid metabolites isolated from incubation of washed, lyophilized baboon placental microsomes with [4-14C-1,2-3H]-testosterone and NADPH by paper chromatography. Relative mobilities towards marker steroids are indicated in parenthesis. Consecutive chromatograms were carried out. The abbreviations used are: B/F (1:1), benzene-formamide (diluted 1:1, V/V, with methanol; MeC/PG (1:1), methylcyclolexane-propylene glycol (diluted 1:1, V/V with methanol). The remaining abbreviations are explained in the text.

intermediates in the synthesis of oestrogens [8, 10, 12], may collapse to the 19-nor steroids enzymatically or by general acid-base catalysis. It is suggested that this event occurs before 2β -hydroxylation of 19-aldotestosterone or 19-aldo-4-androstenedione, since it it is known that this last step leads to the spontaneous synthesis of oestrogens [11]. Moreover, the synthesis of oestrogens from C₁₉-steroids via 2β -hydroxy-19-aldo-4-androstenedione leads to the simultaneous formation of formic acid derived from the C-19-aldo-group [13]. It has been observed, however, that in addition to formic acid, formaldehyde derived from the C-19 position of the substrate is also formed [14, 15]. The presence of formaldehyde arising from the C-19 position can be explained, at least in part, as a product of collapse of 19-hydroxysteroid intermediates in the formation of the 19-norsteroids.

The baboon and human placentas have similar morphological characteristics [16], and steroid metabolizing enzymes [1, 4]. Bolton[17] reported the isolation of 19-nor-4-androstenedione from incubations of isotope-

Metabolite	Crystallization number	Experiment					
		1			2		
		Crystals d.p.m./mg ³ H ¹⁴ C		Rates of formation fmol/mg protein/h	Crystals d.p.m./mg ³ H ¹⁴ C		Rates of formation fmol/mg protein/h
19-Norstestosterone	1	10,700	697		3,960	256	
	2	10,400	642		3,920	264	
	3	9,790	625	5.2	3,920	249	2.0
19-Nor-4-androstenedione	1	22,500	1,370		7,010	497	
	2	19,900	1,270		8,070	520	
	3	21.400	1.380	10.6	7,940	548	4.1

Table 1. Criteria for radiochemical homogeneity in the characterization of 19-norsteroid metabolites isolated from incubations of [4-¹⁴C-1,2-³H]-testosterone with baboon placental microsomes. Crystallization to constant specific activity*, and quantification†

* The bands of radioactivity corresponding to 19-nortestosterone and 19-nor-4-androstenedione, purified by paper chromatography, were diluted with authentic carriers (5 mg) and crystallized 5 times. The specific activities of the crystals obtained in the last three crystallizations are reported. † The formation rates reported are minimal, since losses throughout the extraction and purification steps were not accounted for.

The mean value is reported.

labeled 4-androstenedione with human placental microsomes in the presence of NADPH. To our knowledge, however, this is the first report of the isolation of 19-nortestosterone and 19-nor-4-androstenedione as metabolites of isotope-labeled testosterone by baboon placental microsomes.

REFERENCES

- Milewich L. and Axelrod L. R.: Oestrogen synthesis from [4-¹⁴C-1,2-³H]-testosterone by placental microsomes from baboons. J. Endocr. 52 (1972) 137-145.
- Milewich L. and Axelrod L. R.: Metabolism of [4-¹⁴C-1,2-³H]-testosterone by placental microsomes from baboon: identity of new metabolites in studies of aromatization. *Endocrinology* 91 (1972) 1101-1105.
- Milewich L. and Axelrod L. R.: Metabolism of [4-¹⁴C]-testosterone by lyophilized baboon placental microsomes. *Endocrinology* 88 (1971) 589-595.
- Ryan K. J.: Biological aromitization of steroids. J. biol. Chem. 234 (1959) 268-272.
- Ryan K. J.: Biogenesis of estrogens. In *Biosynthesis* of Lipids (Edited by Popjak, G.) Vol. 7, MacMillan, New York (1963) p. 381.
- Gual C., Morato T., Hayano M., Gut M. and Dorfman R. I.: Biosynthesis of estrogens. *Endocrinology* 71 (1962) 920-925.
- Townsley J. D. and Brodie H. J.: Studies on the mechanism of estrogen biosynthesis-III. The stereochemistry of aromatization of C₁₉ and C₁₈ steroids. *Biochemistry* 7 (1968) 33-40.
- Meigs R. A. and Ryan K. J.: Enzymatic aromatization of steroids—I. Effects of oxygen and carbon monoxide

on the intermediate steps of estrogen biosynthesis. J. biol. Chem. 246 (1971) 83-87.

- 9. Nambara T., Anjyo T. and Hosoda H.: Stereochemistry of enzymic aromatization of 19-norsteroids. *Chem. Pharm. Bull.* **20** (1972) 853–854.
- Thompson E. A. and Siiteri P. K.: Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J. biol. Chem. 249 (1974) 5364-5372.
- Goto J. and Fishman J.: Participation of nonenzymatic transformation in the biosynthesis of estrogens from androgens. Science 195 (1977) 80-81.
- Wilcox R. B. and Engel L. L.: Kinetic studies on the role of 19-hydroxy-androst-4-ene-3,17-dione in estrogen biosynthesis. *Steroids* 5 (Suppl I) (1965) 49-57.
- Akhtar M. and Skinner S. J. M.: The intermediary role of a 19-oxoandrogen in the biosynthesis of oestrogen. *Biochem. J.* 109 (1968) 318-321.
- Axelrod L. R., Matthijssen C., Rao P. N. and Goldzieher J. W.: The fate of carbon-19 in the course of estrogen biosynthesis from testosterone-19-¹⁴C. Acta endocr. Copenh. 48 (1965) 383-391.
- Breuer H. and Grill P.: Bildung von Formaldehyd bei der Aromatisierung neutraler Steroide zu phenolischen Steroiden. Z. physiol. Chem. 234 (1961) 254-261.
- Wynn R. M., Panigel M. and MacLennan A. H.: Fine structure of the placenta and fetal membranes of the baboon. Am. J. Obstet. Gynec. 109 (1971) 638-648.
- Bolton S. K. M.: Studies on the aromatization of androgens to estrogens in human placental microsomes. M.A. thesis, University of Texas, 1969.